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The toy in 2D and 3D

Maxwell’s equations - homogenisation and numerics

Asymptotic theories for close spacing

Topological models

Box crystals

Experiments in 3D



yn+1,m + yn−1,m + yn,m+1 + yn,m−1 + (Ω2 − 4)yn,m = δ0,0

yn,m =
1

(2π)2

π̂

−π

π̂

−π

exp[−i(k1n+ k2m)]

D(Ω, k1, k2)
dk1dk2.

Dropping the forcing and setting yn+N,m+M = exp(i[κ1N + κ2M ])yn,m
givrs

D(Ω, κ1, κ2) = Ω2 − 4 + 2(cosκ1 + cosκ2) = 0.



Elliptic near M
Standing wave frequency is Ω0 =

√
8

Ω2 ∼ Ω2
0 + ε2Ω2

2

In the integral k1 = π + εα, k2 = π + εβ, using the periodicity of the
integral and thereby centring the region of integration at M .

yn,m =
exp[−iπ(n+m)]

(2π)2

∞̂

−∞

∞̂

−∞

exp[−i(αη1 + βη2)]

α2 + β2 + Ω2
2

dαdβ +O(ε),

Use long-scale variable η = (η1, η2) = ε(n,m).
Short-scale oscillatory piece Yn,m = exp[−i(n+m)π], and a long-scale
component f(η) so yn,m = Yn,mf(η) +O(ε).

f(η) =


1
2πK0

(√
Ω2

2r
)

if Ω2
2 > 0

i
4H

(1)
0

(√
−Ω2

2r
)

if Ω2
2 < 0

,



Ω =
√

8− 0.01, incidentally from HFH

fη1η1(η) + fη2η2(η)− Ω2
2f(η) = −δ(η1)δ(η2)



Near X
The wavenumber at X (= X(1)) has, from the symmetries of the
irreducible Brillouin zone, a related point X(2) at (π, 0) and the standing
wave frequency is Ω0 = 2. Set k1 = εα, k2 = π + εβ

yn,m =
exp[−imπ]

(2π)2

∞̂

−∞

∞̂

−∞

exp[−i(αη1 + βη2)]

−α2 + β2 + Ω2
2

dαdβ +O(ε),

Short-scale an oscillatory component Yn,m = exp[−imπ] and on the
long-scale an integral, which has solution

f(η) =

AH
(1)
0

(√
ρ2Ω2

2

)
if ρ2Ω2

2 > 0

BK0

(√
−ρ2Ω2

2

)
if ρ2Ω2

2 < 0
,

where ρ2 = η21 − η22 , A and B are constants, H
(1)
0 is the Hankel function

and K0 the modified Bessel function. There is a logarithmic singularity

where η1 = ±η2, on the diagonals, hence the solution is divided into

pieces valid in different quadrants



The field excited by a source at frequency Ω =
√

4− 0.01 at point X of
the Brillouin zone

The field excited by a source at frequency Ω =
√

4 + 0.01



Three dimensions

ym+1,n,p + ym−1,n,p + ym,n+1,p + ym,n−1,p + ym,n,p+1 + ym,n,p−1

+(Ω2 − 6)ym,n,p = δ0,0,0
The dispersion relation relating κ = (κ1, κ2, κ3) to frequency Ω, in the
absence of forcing, is

D(Ω, κ1, κ2, κ3) = Ω2 − 6 + 2(cosκ1 + cosκ2 + cosκ3) = 0,

Fourier solution

ym,n,p =
1

(2π)3

π̂

−π

π̂

−π

π̂

−π

exp[−i(k1m+ k2n+ k3p)]

D(Ω, k1, k2, k3)
dk1dk2dk3





Near X

Wavevector has coordinates (0, π, 0) and the standing wave frequency is
Ω0 = 2. Make change of variables k1 = εα, k2 = π + εβ, k3 = εγ, gives

ym,n,p =
e−inπ

(2π)3
ε

∞̂

−∞

∞̂

−∞

∞̂

−∞

exp[−i(αη1 + βη2 + γη3)]

−α2 + β2 − γ2 + Ω2
2

dαdβdγ +O(ε2)

Long-scale variable is η = (η1, η2, η3) = ε(m,n, p). Ym,n,p = ε exp[−inπ]
and a long-scale function

f(η) =
exp

[
i
√

Ω2
2ρ

2
]

4πρ
, (0.1)

where ρ2 = η21 − η22 + η23 ;

fη1η1(η)− fη2η2(η) + fη3η3(η) + Ω2
2f(η) = δ(η1)δ(η2)δ(η3),





Example from Maxwell’s equation
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Asymptotics

Many of the exciting results in topological wave physics have
their origin in tight-binding models from quantum mechanics
that are discrete networks.

There is a strong demand for robust redirection of light/ em/
acoustic waves using topological ideas.

Many empirical fitting methods for closely spaced objects with
”lumped parameter models”, there is an asymptotic model
with no fitting.

Many topological (discrete) systems protected by chiral
symmetry, but this is broken by long-range interactions so not
trivially achievable in continua - but here we achieve this.



Simple photonic/phononic crystal
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Asymptotic method - physics
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Asymptotic method - matching

(I) (II)

(III)

(IV)

2 2h
void void

flux

X =
x√
h

Y =
y

h

Y ∼ 1 +
X2

2

Q

Inner problem takes the local curvatures (R1, R2) into account.
Outer problem / matching connects the inner problems. The
pressures in void n,m are the unknowns.



Result for a square lattice and cylinders of radius a

A discrete wave equation emerges as

A0

c2δ

d2pn,m
dt2

= pn,m+1 + pn,m−1 + pn−1,m + pn+1,m − 4pn,m, (1.2)

where c2 = γp0/ρ0 is the speed of sound squared.
δ is normalised acoustic conductivity

δ =
1

π

√
2h

a
� 1. (1.3)

Much more general than just cylinders, or a square array. By varying the

local curvatures, δnm or void A0nm or lattice we now have a non-lumped

parameter route back and forth discrete and continuous.
A. Vanel, O. Schnitzer , R. V. Craster, EPL, 119, 2017



Valley Hall

A0

A′
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A closely packed hexagonal lattice of cylinders forms a honeycomb

network of voids connected by narrow gaps. Inversion symmetry is broken

by making the areas of the two voids in each unit cell different



A0

c2δ

∂2pn,m
∂t2

= p′n,m + p′n−1,m + p′n,m−1 − 3pn,m, (1.4)

A′0
c2δ

∂2p′n,m
∂t2

= pn,m + pn+1,m + pn,m+1 − 3p′n,m, (1.5)

where pn,m and p′n,m are the pressures in the two voids, respectively of
areas A0 and A′0, within unit cell (n,m); the indexes n and m represent
2a displacements in the ê1 = êx and ê2 directions shown in Fig. ??. The
dispersion relation follows as

A0A
′
0

c4δ2
Ω4 − 3(A0 +A′0)

c2δ
Ω2 + 6− 2 cos(2κxa)

− 4 cos(κxa) cos(
√

3κya) = 0. (1.6)
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The acoustic branch for the hexagonal array of circular cylinders

(h/a = 0.01, symbols are numerics and black line is (1.6) for A0 = A′0).

Insertion of a defect opens the hexagon-lattice Dirac point at K (solid

blue line is (1.6) for A′0 −A0 = 0.05a2).



Topological example

Wu and Hu PRL (2015) gave a remarkable example mimicking
quantum spin hall in photonics. Dielectric honeycomb of inclusions
with symmetry broken.

Figures taken from Plasmonic version by M. Proctor et al ACS Photonics 2019



Closely spaced version



Kagome model

We will need the Kagome model later, so let us briefly describe it



Kagome model

Note the flat band



Square-root semi-metal
Following, say, Mizoguchi et al PRB 2021. Let us look at a
tight-binding model for the honeycomb-kagome model and its
topological properties.



Tight-binding

The Hamiltonian has a block off-diagonal form,

Hhk
~k

 u1
...
u5

 =

[
02×2 tΨ†~k
tΨ~k

03×3

] u1
...
u5

 , (1.7)

Hoppings between different sublattices and chiral symmetric.

(
Hhk

~k

)2
=

[
t2Ψ†~k

Ψ~k
02×3

03×2 t2Ψ~k
Ψ†~k

]
=

[
Hh

~k
02×3

03×2 Hk
~k

]
, (1.8)

A square-root Hamiltonian: Honeycomb Kagome is a square-root
topological semi-metal with non-trivial topology.



The photonic version

Palmer, Ignatov, Craster, Makwana, New J. Phys. 24, 053020, 2022



Edge states
We can now create topologically protected edge states using
results from semi-metals.



Finite structures - just discrete model


	An asymptotic example

