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N. Jimenéz et al. Phys. Rev. B 95 (1), 014205, (2017).
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N. Jimenéz et al. Phys. Rev. B 95 (1), 014205, (2017).
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Wave propagation in cylindrical tubes
Transfer matrix method
Helmholtz resonator
Lumped elements
Scattering matrix

Hypothesis

Anechoic

termination

Impedance

sensor

Helmhotlz

resonator
Resonator

holder

P4P3
P2P1

Microphone

What we consider is:

Acoustic wave propagation in
cylindrical waveguides.

Viscous and thermal effects:
dissipative fluid and
boundary layers.

Hypothesis

Wave propagation in isotropic and
homogeneous fluids.

Plane wave propagation, 1D
reciprocal problem.

Punctual resonators.

What we use:

Transfer matrix method.

Effective parameters to consider
viscous and thermal effects.

Correction lengths in the resonator
elements.
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Wave propagation in cylindrical tubes

∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2

∂2p

∂θ2
+
∂2p

∂x2
+ k2p = 0,

k2 = k2
r + k2

x ,

p(r , θ, x , ω) = R(r)Θ(θ)X (x)e−iωt ,

p(r , θ, x) = [ArJm(kr r) + BrNm(kr r)]
[
Aθe

−imθ + Bθe
imθ
] [

Axe
−ikxx + Bxe

ikxx
]
.

Geometric conditions, Br = 0.

Neumann type boundary conditions
at r = R, ∂p

∂r |r=R = 0, J ′(krR) = 0.

Propagating waves along x+,
Ax = 0.

Cut-off frequency

J ′(krR) = 0→ kmn
r R = jmn.

First mode, m,n=1,0.

fc = 1.84 c
2πR .
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Propagation of plane waves in cylindrical narrow tubes

Consider a tube of radius R containing an ideal gas of viscosity η and thermal conductivity κ.

ρ0
∂~v

∂t
= −~∇p +

4

3
η~∇(~∇~v)− η~∇× ~∇× ~v ,

∂ρ

∂t
= −ρ0

~∇~v ,

κ~∇T =
T0

P0

(
ρ0Cv

∂p

∂t
− P0Cp

∂ρ

∂t

)
,

∂p

∂t
=

P0

ρ0T0

(
ρ0
∂T

∂t
+ T0

∂ρ

∂t

)
.

Lossy case e−iωt

−iωρ0~v = −~∇p +
4

3
η~∇(~∇~v)− η~∇× ~∇× ~v ,

iωρ = ρ0
~∇~v ,

κ~∇T = − iωT0

P0
(ρ0Cvp − P0Cpρ) ,

p =
P0

ρ0T0
(ρ0T + T0ρ) .

Lossless case e−iωt

iωρ0~v = ~∇p,
iωρ = ρ0

~∇~v ,
ρ0p = P0γρ, γ ≡ Cp/Cv ,

p =
P0

ρ0T0
(ρ0T + T0ρ) .
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Propagation of plane waves in cylindrical narrow tubes

Considering that R > 10−3 cm and the waveguide is filled with air, the average velocity and
the excess density are given by 1

iωρ(ω) < u >=
dp

dx
, B(ω) =

ρ0p

< ρ >
,

Effective mass density

ρ = ρ0

(
1− 2J1(RG̃r )

RG̃rJ0(RG̃r )

)−1

,

G̃r =
√
iωρ0/η.

Effective bulk modulus

B = γP0

(
1 + (γ − 1)

2J1(RG̃k)

RG̃kJ0(RG̃k)

)−1

,

G̃k =
√
iω Pr ρ0/η, Pr Prandtl number

The effects of viscosity and thermal conduction are well separated.

1
G. Kirchhoff, Ann. Phys. Chem., 134, 177 (1868); C. Zwikker and C.W. Kosten, Sound Absorbing Materials (Elsevier, Amsterdam, 1949); H. Tijdeman, J. Sound. Vic., 39,

1 (1975); D.E. Weston, Proc. Phys. Soc. London Sec. B, 66, 95, (1953); M.R. Stinson, J. Acoust. Soc. Am., 89, 550, (1991).
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Propagation constant: kx = ±
√
ω2ρ(ω)/B(ω).

R = [0.001 0.002 0.005 0.01 0.015 0.02 0.025] m.
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Hypothesis

1D propagation, i.e., plane wave propagation.
Propagation in homogeneous and isotropic materials.

Definition

The transfer matrix between the two faces, x = 0 and x = L, of 1D material, T, is used to
relate the sound pressure, P, and normal acoustic particle velocity, V ,[

P
V

]
x=0

= T

[
P
V

]
x=L

=

[
T11 T12

T21 T22

] [
P
V

]
x=L

, (1)
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Transmission problem

We start by solving the problem with a left hand side incident wave.

When the incident plane wave is assumed of unitary amplitude, the sound pressures and
particle velocities on the two surfaces of the layer become

P|x=0 = 1 + R+, (2)

V |x=0 =
1

Z0
(1− R+), (3)

P|x=L = T+e ikL, (4)

V |x=L =
T+e ikL

Z0
. (5)
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Transmission problem

We start by solving the problem of incidence from the left side.

We can represent the reflection and transmission coefficients with a left hand side incident
wave as:

T+ =
2e−ikL

T11 + T12/Z0 + Z0T21 + T22
, (6)

R+ =
T11 + T12/Z0 − Z0T21 − T22

T11 + T12/Z0 + Z0T21 + T22
. (7)
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Transmission problem

Now we solve the problem with a right hand side incidence wave.

We can represent the reflection and transmission coefficients with a right hand side incident
wave:

T− =
2e−ikL(T11T22 − T12T21)

T11 + T12/Z0 + Z0T21 + T22
, (8)

R− =
−T11 + T12/Z0 − Z0T21 + T22

T11 + T12/Z0 + Z0T21 + T22
. (9)
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Transmission problem

If the system is symmetric, then, R+ = R−, and as a consequence, T11 = T22.

For reciprocal systems, T+ = T−, then the transfer matrix is unitary
(T11T22 − T12T21 = 1). This property is satisfied for linear and time invariant systems.

The reflection and transmission coefficients are

T− =
2e ikL(T11T22 − T12T21)

T11 + T12/Z0 + Z0T21 + T22
, (10)

R− =
−T11 + T12/Z0 − Z0T21 + T22

T11 + T12/Z0 + Z0T21 + T22
, (11)

R+ =
T11 + T12/Z0 − Z0T21 − T22

T11 + T12/Z0 + Z0T21 + T22
. (12)
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Absorption in Transmission problem

For symmetric systems the absorption coefficient is the same whatever the incidence side,
and is calculated as

α = 1− |R|2 − |T |2. (13)

For asymmetric systems the absorption depends on the side of the incidence. For the
positive x-axis incoming waves, the asymmetric absorption is given by

α− = 1− |R−|2 − |T |2, (14)

while for the negative x-axis incoming waves,

α+ = 1− |R+|2 − |T |2. (15)
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Reflection problem

Now, we consider that the L-thick layer of material is positioned against a rigid backing.

On the wall, Vx=L = 0. Then, the reflection coefficient is,

R =
T11 − Z0T21

T11 + Z0T21
, (16)

and, finally, the absorption coefficient of the rigidly-backed system reduces to

α = 1− |R|2. (17)
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Homogeneous isotropic material

P(x) = Ae ikx + Be−ikx ,

V (x) = A
Z e

ikx − B
Z e
−ikx .

where Z is the impedance and k
the wavenumber.

P(0) = A + B,

V (0) = A
Z −

B
Z .

P(L) = (A + B) cos (kL) + i(A−B)Z sin (kL),

V (L) = (A+B)
Z cos (kL) + i(A−B)

Z sin (kL),

Homogeneous isotropic
material

[
cos (kL) −iZ sin (kL)
−i
Z sin (kL) cos (kL)

]
.
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Parallel resonant branch (continuity of pressure)

We consider a punctual resonator such
that ∆x << λ.

The pressures just before and just after
the resonator are the same as the pressure
at the opening of the resonator.

The presence of the side branch resonator
produces a flow drop:

ZR =
P|∆x

−∆V
=

P|∆x

V |0 − V |∆x
.

P(0) = P(∆x),
V (0) = V (∆x) + ZRV (0).

Parallel resonant branch

[
1 0
1
ZR

1

]
.
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Series impedance branch (continuity of particle velocity)

We consider punctual resonator as
∆x << λ.

The particle velocities just before and just
after the resonator are the same as the
particle velocity of the resonator.

The presence of the resonator in series produces a
pressure drop:

ZR =
∆P

V
=

P|0 − P|∆x

V |∆x
.

V (0) = V (∆x),
P(0) = P(∆x) + ZRV (∆x).

Series impedance branch

[
1 ZR

0 1

]
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Flux formulation

When the fluid is confined in waveguides of different cross-sectional area, reflections are
produced at the discontinuities. In this case, it is convinient reformulate the problem in terms
of the flux, V.

V = SV

where S is the cross-sectional area of the waveguide. In this cas, what we have is[
P
V/S

]
x=0

=

[
T11 T12

T21 T22

] [
P
V/S

]
x=L

. (18)

[
P
V

]
x=0

=

[
T11 T12/S

T21/S T22

] [
P
V

]
x=L

. (19)
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Summary

In this notes, we are using e−iωt .

Transfer matrix of a slab of thickness L made of an isotropic material characterized by a
wavenumber k and the characteristic impedance Z ′ = Z/S is,[

P
V

]
x=0

=

[
cos(kL) −iZ ′ sin(kL)
− i

Z ′ sin(kL) cos(kL)

] [
P
V

]
x=L

. (20)

Parallel impedance branch (continuity of pressure).[
P
V

]
x=0

=

[
1 0
1
Z ′
R

1

] [
P
V

]
x=L

. (21)

Series impedance branch (discontinuity of pressure).[
P
V

]
x=0

=

[
1 Z ′R
0 1

] [
P
V

]
x=L

. (22)
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Assembling of two cylindrical tubes
of different cross section.

Viscothermal losses accounted in
the system via Stinson’s formula.

T =

[
cos(knln) −iZ ′n sin(knln)

−i sin(knln)/Z ′n cos(knln)

] [
cos(kc lc) −iZ ′c sin(kc lc)

−i sin(kc lc)/Z ′c cos(kc lc)

]
.

where Z ′n = Zn/Sn and Z ′c = Zc/Sc . Applying the rigid boundary condition at the end of the
Helmholtz resonator, we obtain

Z ′R = iZ ′n
Z ′c/Z

′
n − tan knln tan kc lc

Z ′c/Z
′
n tan knln + tan kc lc

,
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For low frequencies, when knln � 1 and
kc lc � 1, then, tan(knln) ≈ knln and
tan(kc ln) ≈ kc lc . So we obtain

Z ′R = iZ ′n
Z ′c/Z

′
n − knlnkc lc

Z ′c/Z
′
nknln + kc lc

.

If losses are not considered, kn = kc = k0 and Zn = Zc = Z0, with k0 = ω/c0 and Z0 = ρ0c0.
The first resonance of the HR is observed when =m(Z ′R) = 0, we also obtain

ωR = c0

√
Sn

lnlcSc
= c0

√
Sn
lnVc

,

which is the usual expression for the resonance frequency of a Helmholtz resonator, where
Vc = Sc lc is the volume of the cavity.
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End corrections

The radiation at discontinuities must be included.

T =

[
cos(kn∆l1) −iZ ′n sin(kn∆l1)

−i sin(kn∆l1)/Z ′n cos(kn∆l1)

][
cos(knln) −iZ ′n sin(knln)

−i sin(knln)/Z ′n cos(knln)

]
[

cos(kn∆l2) −iZ ′n sin(kn∆l2)
−i sin(kn∆l2)/Z ′n cos(kn∆l2)

][
cos(kc lc) −iZ ′c sin(kc lc)

−i sin(kc lc)/Z ′c cos(kc lc)

]
.

∆l1, is due to pressure radiation at the discontinuity from the neck duct to the cavity of the
Helmholtz resonator . ∆l2 comes from the radiation at the discontinuity from the neck to the
principal waveguide.
Considering the low frequency approximation, we get

Z ′R = iZ ′n

cos knln cos kc lc −
kn∆lZ ′n

Z ′c
cos knln sin kc lc −

Z ′n
Z ′c

sin knln sin kc lc

sin knln cos kc lc −
kn∆lZ ′n

Z ′c
sin knln sin kc lc +

Z ′n
Z ′c

cos knln sin kc lc

,
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Change of section in a waveguide. The length correction, ∆l , is approximated by 2,

∆l = 0.82

[
1− 1.35

rn
rc

+ 0.31

(
rn
rc

)3
]
rn.

where rn is the radius of the small waveguide, e.g., the neck, and rc is the radius of the big
waveguide, e.g, the cavity of a cylindrical Helmholtz resonator.

A tube is loaded in parallel to the principal waveguide. The length of the end correction
∆l is given by 3

∆l = 0.82

[
1− 0.235

rn
rs
− 1.32

(
rn
rt

)2

+ 1.54

(
rn
rt

)3

− 0.86

(
rn
rt

)4
]
rn,

where rn is the radius of the loading waveguide and rt is the radius of the main waveguide.

2
J. Kergomard and A. Garcia, J. Sound Vib.114, 465 (1987)

3
V. Dubos et al. Acta Acustica united with Acustica, 85, 153 (1999).
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Exercise

Consider a cylindrical tube, with radius R and length L. The tube has a rigid termination at
x = L and it is open at x = 0. Obtain the characteristic impedance at x = 0.

This corresponds to the impedance of a quater wavelength resonator, can you justify this
sentence?

25 / 29 V. Romero-Garćıa Resonant scattering 1D



Modeling of the analyzed system

Wave propagation in cylindrical tubes
Transfer matrix method
Helmholtz resonator
Lumped elements
Scattering matrix

Remember we are in the low frequency approximation (!)

Series circuit

p

p
2

p
1

Z
1

Z
2

p

#

p = p1 + p2

V = V1 = V2

Then, p

V
=

p1

V1
+

p2

V1
=

p1

V1
+

p2

V2

Z ′ = Z ′1 + Z ′2

For n elements, Z ′ =
n∑

i=1

Z ′i

Parallel circuit

p
p
2

p
1

Z
1

Z
2

p

#

#
1

#
2

p = p1 = p2

V = V1 + V2

Then, p

V
=

p1

V1 + V2
=

1
V1

p1
+ V2

p2

Z ′−1 = Z ′−1
1 + Z ′−1

2

For n elements, Z ′−1 =
n∑

i=1

Z ′−1
i
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The scattering matrix, S, relates the amplitudes of the incoming waves to the system with
those of the out-coming waves.

We consider that the total pressure in a point x < 0 (x > L) is given by p(x) = Ae ikx + Be−ikx

(p(x) = Ce ikx + De−ikx ). Then,[
C
B

]
= S

[
A
D

]
=

[
S11 S12

S21 S22

] [
A
D

]
=

[
T R+

R− T

] [
A
D

]
. (23)

The relation between T and S is then given by the Eqs.(6-14).
Exercise. Obtain the eigenvalues and eigenvectors of the S-matrix.
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Departamento de Matemática Aplicada, Universitat Politècnica de València.
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