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Lectures in two pieces: first periodic media, then wave guides (then see
how they connect). For periodic media:

Practical applications

Homogenization theory: conventional theory valid for low
frequencies and long waves. High frequency means multiple
scattering and wavelength close to micro-scale. Need a new idea...

Bloch waves: perfect lattices and quasi-periodicity.

General theory: continuous media

Elastic plates

Rayleigh-Bloch/interface waves

Examples from photonics: All angle negative refraction,
ultra-refraction and localised defect modes.

Concluding remarks.



Typical Structures: Photonic crystals (Optics)

Micrographs of various Photonic Crystal Fibre structures taken from the

review of Russell (Science 2003). The regular array of holes allow for

excellent (low-loss) waveguides in optics and have a host of applications:

sensors, high bandwidth guides, optical filters etc.



Engineering foams

Photographs of cellular solids: (a) open-cell polyurethane (b) closed-cell

polyurethane (c) nickel (d) copper (e) zirconia (f) mullite (g) glass (h) a

polyether foam with both open and closed cells. Taken from the book of

Gibson and Ashby, 1997



Ranges of length scales

Discrete crystal atomic lattice structures in solid state physics and the

Eiffel tower (made of periodic trusses and frames).



Continuous periodic composite structures: photonic and phononic
crystals.
Frame structures: Lattice trusses, strings or beams creating a structure.
Discrete atom structures: Mass spring models - completely discrete.

All of these involve a well defined microscale (possibly many thousands,

millions of cells) and a macroscale. Modelling waves through this is

awkward, particularly when the wavelength and microscale is of the same

order - would like to deal with macroscale equations with the microscale

“built-in” through effective parameters.



Homogenization theory

A huge research area with many thousands of articles, numerous books.
Almost all of this is either static or quasi-static: long wave and low
frequency, so the wavelengths are much longer than the microscale.
For instance, taking a piecewise constant elastic string on −∞ < x <∞

l2
d2u

dx2
+ Ω2 u

c2(ξ)
= 0, with Ω =

ωl

ĉ0
. (0.1)

with ξ = x/l and speed

c(ξ) =

{
1/r for n ≤ ξ < n+ 1

1 for n− 1 ≤ ξ < n

(n even).
A key idea is that there are two scales: ξ = x/l a short scale and
X = x/L a long scale, with ε = l/L. Note it is conventional to have a
subtley different scaling y = ξ/ε and ξ, but I choose another. (Discuss)
Then treat ξ,X as independent quantities so u(x) = u(ξ,X) and

∂x =
1

l
(∂ξ + ε∂X).



uξξ + 2εuξX + ε2uXX +
Ω2u

c2(ξ)
= 0

Now if the frequency is low so Ω2 ∼ ε2Ω2
2 we expand

u(ξ,X) = u0(ξ,X) + εu1(ξ,X) + ε2u2(ξ,X) + ...

To leading order
u0ξξ = 0

so u0(ξ,X) = u0(X) (after noting implied periodicity in ξ).
Next order u1 = u1(X) just absorb into u0 and then finally

u2ξξ = −(u0XX + u0
Ω2

2

c2(ξ)
)

solvability means the RHS integrated from −1 to 1 wrt ξ is zero and
hence

u0XX(X) + u0(X)
Ω2

2

2

ˆ 1

−1

1

c2(ξ)
dξ = 0.

One just replaces the inverse speed squared effectively by its “effective”

speed which is just the average. Naturally attractive approach giving

equations only on the long scale and details built into an average.



Perfect periodic systems

Perfect systems are attractive, consider a chain of identical masses. If
they are connected by simple springs with identical spring constant

yn+1 + yn−1 − 2yn = −MΩ2yn

for integer n. Ω is the frequency.
A simple model

n n+1

M

For a perfect lattice assume that yn+1 = eiκyn where κ is the phase
shift. A key item of interest is the dispersion relation that connects the
phase-shift to frequency

Ω =
2√
M

sin
(κ

2

)
Note it is linear for small Ω and Ω ∼ κ/

√
M - so dispersionless at small

frequencies and long waves.
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Dispersion curves for the one-dimensional uniform lattice, (a) and the

diatomic lattice (b). The exact dispersion curves are the solid lines whilst

the asymptotics are the dashed lines. In panel (a) the dashed line above

the exact curve shows the frequency associated to the localised defect

state. In panel (a) the mass value M = 1 whilst in (b) M1 = 2 and

M2 = 1.



Homogenization for simple chain

We begin by introducing a long-scale continuous variable η = εn where ε
is some small parameter The frequency is Ω = εΩ̂ (where Ω̂) is an order
one quantity. Let us set

yn = y(η), yn±1 = y(η ± ε) (0.2)

and then the difference equation becomes, in this new language, that

y(η + ε) + y(η − ε)− 2y(η)−Mε2Ω̂2y(η) (0.3)

An expansion in a Taylor series

y(η + ε) ∼ y(η) + εy′(η) +
ε2

2
y′′(η) + . . . (0.4)



yields, to leading order,

yηη +M Ω̂2y = 0. (0.5)

This is simply the wave equation for a string and suggests that if the
wave was long enough that it would see the collection of masses as being
smeared out to produce an effective string.
Notably the dispersion relation one obtains from the effective string is

κ =
√
MΩ (0.6)

when one replaces η with εn etc.



Bloch waves
Given a perfect infinite lattice in 1D or 2D can consider a single “cell”.
Classical example is the diatomic chain of masses and springs.

2n 2n+1

M
2n

M
2n+1

After non-dimensionalization the displacements y2n satisfy

y2n−1 + y2n+1 − 2y2n = −M2nΩ2y2n

y2n + y2n+2 − 2y2n+1 = −M2n+1Ω2y2n+1.

Set M2n = M2,M2n+1 = M1 then can just consider a cell y2n, y2n+1

and use a vector notation y2n = (y2n, y2n+1)T .
Floquet-Bloch conditions are set across the cell

y2n+2 = exp(iκ)y2n.



Dispersion relation

The Bloch wavenumber κ plays a vital role - the phase shift across a cell
- and is related to the frequency via a dispersion relation

M1M2Ω4 − 2(M1 +M2)Ω2 + 2(1− cosκ) = 0.

Note range of κ and standing waves at end of Brillouin zone. Dashed

lines from asymptotics (this is sufficiently simple that they can be verified

analytically), really want to allow for varying masses, 2D, no longer

perfect lattice, so not Bloch, find a continuum PDE for the high

frequency vibration of the lattice etc etc. Before doing so more Bloch

waves ...
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2D lattice

Similar ideas hold for perfect lattices in higher dimensions - some useful
extra details relevant for the general theory later. Consider, say, a square
lattice of alternating masses:

(2n,2m) (2n+1,2m)

(2n,2m+1) (2n+1,2m+1)

The square lattice

(2n,2m) (2n+1,2m)

(2n,2m+1) (2n+1,2m+1)



y2n+1,2m + y2n−1,2m + y2n,2m+1 + y2n,2m−1 − 4y2n,2m = −M1Ω2y2n,2m

y2n+2,2m+1 + y2n,2m+1 + y2n+1,2m+2 + y2n+1,2m − 4y2n+1,2m+1

= −M1Ω2y2n+1,2m+1

y2n+2,2m+y2n,2m+y2n+1,2m+1+y2n+1,2m−1−4y2n+1,2m = −M2Ω2y2n+1,2m

y2n+1,2m+1+y2n−1,2m+1+y2n,2m+2+y2n,2m−4y2n,2m+1 = −M2Ω2y2n,2m+1



2D dispersion relation

Consider an infinite medium (just use a cell of four masses) and utilise
the Bloch relation,

y2n+N̂,2m+M̂ = exp(i[κ1N̂ + κ2M̂ ])y2n,2m (0.7)

with Bloch wavenumber vector κ = (κ1, κ2). The exact dispersion
relation is the eigenvalue problem

[A(κ)− Ω2M ]y2n,2m = 0. (0.8)

Here y2n,2m is the displacement vector

y2n,2m = [y2n,2m, y2n+1,2m+1, y2n+1,2m, y2n,2m+1]T ,

M = diag[M1,M1,M2,M2], and A(κ) is the Hermitian matrix

A(κ) =


4 0 −(1 + e−2iκ1) −(1 + e−2iκ2)
0 4 −(1 + e2iκ2) −(1 + e2iκ1)

−(1 + e2iκ1) −(1 + e−2iκ2) 4 0
−(1 + e2iκ2) −(1 + e−2iκ1) 0 4
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Dispersion curves for the square lattice: the inset shows shows the
reciprocal lattice in κ = (κ1, κ2) space, the irreducible Brillouin zone is
completely characterised by the triangle ABC. The dotted lines in the
upper half of the figure are asymptotic results.

Note flat regions, positive/ negative group velocities, degenerate cases.

Also standing wave structure: periodic-periodic, periodic - antiperiodic,

antiperiodic-antiperiodic.



General theory

Turn to a continuum with a double periodic microstructure - aim to
generate a continuum description only on the macroscale. Then return to
Bloch cases to verify model, then to non-periodic cases....

2l

L

2l

L

Consider a medium with two lengthscales L and l where L� l, set
ε = l/L� 1 for future use.

The microstructure is characterized by stiffness â(x1/l, x2/l) and density

ρ̂(x1/l, x2/l) that are periodic on the microscale ξ = (x1/l, x2/l).



Consider a wave equation, for, say, SH waves in anti-plane elasticity with
periodic density with time harmonic dependence exp(−iωt) assumed
understood, as

l2∇x · [a(ξ)∇xu(x)] + Ω2ρ(ξ)u(x) = 0 with Ω =
ωl

ĉ0

with ĉ0 =
√
â0/ρ̂0 a characteristic wave speed.

Adopt a multiple scales approach treating the disparate lengthscales
X = x/L, and ξ = x/l as new independent variables to get

∇ξ · [a(ξ)∇ξu(X, ξ)] + Ω2ρ(ξ)u(X, ξ)

+ε[2a(ξ)∇ξ +∇ξa(ξ)] · ∇Xu(X, ξ) + ε2a(ξ)∇2
Xu(X, ξ) = 0

As noted when looking at Bloch waves there are standing waves that are
locally periodic-periodic on the microscale - then u(X, ξ) periodic in ξ,
but not necessarily in X.

u|ξ1=1 = u|ξ1=−1, u|ξ2=1 = u|ξ2=−1,
uξ1 |ξ1=1 = uξ1 |ξ1=−1, uξ2 |ξ2=1 = uξ2 |ξ2=−1.



Asymptotic theory

Adopt the ansatz:

u(X, ξ) = u0(X, ξ)+εu1(X, ξ)+ε2u2(X, ξ)+. . . , Ω2 = Ω2
0+εΩ2

1+ε2Ω2
2+. . .

Each ui(X, ξ) for i = 1, 2 . . ., is periodic in ξ.
Importantly, this is not limited to Ω2 � 1 as in classical homogenization
for which

u(X, ξ) = u0(X) + . . . , Ω2 = ε2Ω2
2 + . . .

Now solve order-by-order in ε.
At leading order

∇ξ · [a(ξ)∇ξu0] + Ω2
0ρ(ξ)u0 = 0

A discrete spectrum of eigenvalues Ω2
0 for which there is no phase shift

across the structure and standing wave is formed. Solution is (simple
eigenvalue)

u0(X, ξ) = f0(X)U0(ξ,Ω0) (0.9)

where U0(ξ,Ω0) is a periodic function of ξ, is known as is Ω0. f0(X) is

unknown and varies only on the macroscale.



First order
The equation for u1(X, ξ) is

∇ξ·[a(ξ)∇ξu1]+Ω2
0ρ(ξ)u1 = −∇Xf0·[2a(ξ)∇ξU0+U0∇ξa(ξ)]−f0Ω2

1ρ(ξ)U0

and we now invoke an orthogonality condition, integrating over a cell one
finds that ¨

S

(
U0∇ξ · [a(ξ)∇ξu1] + Ω2

0ρ(ξ)U0u1
)
dS

= −∇Xf0 ·
¨
S

∇ξ[a(ξ)U2
0 ]dS − f0Ω2

1

¨
S

ρ(ξ)U2
0 dS

and further that

0 =

¨
S

(U0∇ξ·[a(ξ)∇ξu1]−u1∇ξ·[a(ξ)∇ξU0])dS = −f0Ω2
1

¨
S

ρ(ξ)U2
0 dS.

So Ω1 must be identically zero.
An explicit solution for u1(X, ξ) is

u1(X, ξ) = f1(X)U0(ξ,Ω0) +∇Xf0(X) · [V1(ξ,Ω0)− ξU0(ξ,Ω0)].



Auxiliary function

The vector function V1 = (V
(1)
1 , V

(2)
1 ) satisfies

∇ξ · [a(ξ)∇ξ]V1 + Ω2
0ρ(ξ)V1 = 0, (0.10)

but each component of V1 must be linearly independent of U0(ξ,Ω0),
choose it to be non-periodic. u1(X, ξ) itself must be periodic in ξ.
Achieve this by selecting each individual component of V1 to be periodic
along one of the ξi and then choose its boundary conditions along the
other ξj , j 6= i, in such a way that condition u1 itself is periodic. Do this
on a single cell and then periodically continue to the full structure.

V
(1)
1 (ξ,Ω0) it taken to have periodicity in ξ2 and then periodicity of u1

in ξ1 results in

V
(1)
1 |ξ1=1 − V (1)

1 |ξ1=−1 = 2U0|ξ1=1 (0.11)

V
(1)
1ξ1
|ξ1=1 − V (1)

1ξ1
|ξ1=−1 = 2U0ξ1 |ξ1=1. (0.12)

Similar procedure for V
(2)
1 (ξ,Ω0).



Continuum equation

∇ξ · [a(ξ)∇ξu2] + Ω2
0ρ(ξ)u2 =

−a(ξ)U0∇2
Xf0 − [2a(ξ)∇ξ +∇ξa(ξ)] · ∇Xu1 − Ω2

2ρ(ξ)f0U0

contains both f0(X) and the eigenvalue correction, Ω2
2. Invoking an

orthogonality condition, integrating over the cell yields an eigenvalue
problem for f0 and Ω2

2 as the partial differential equation

Tij
∂2f0

∂Xi∂Xj
+ Ω2

2f0 = 0, with Tij =
tij˜

S
ρ(ξ)U2

0 dS
for i, j = 1, 2.

t11 = −2

ˆ 1

−1
[a(ξ)U2

0 ]ξ1=1dξ2 +

¨
S

(2a(ξ)V
(1)
1ξ1

+ aξ1(ξ)V
(1)
1 )U0dS,

t12 = t21 =
1

2

¨
S

(
2a(ξ)(V

(1)
1ξ2

+ V
(2)
1ξ1

) + aξ2(ξ)V
(1)
1 + aξ1(ξ)V

(2)
1

)
U0dS,

t22 = −2

ˆ 1

−1
[a(ξ)U2

0 ]ξ2=1dξ1 +

¨
S

(2a(ξ)V
(2)
1ξ2

+ aξ2(ξ)V
(2)
1 )U0dS.

This is entirely on the macroscale with the microstructure built in

through integrated quantities.



1D example: a piecewise string

If we take

l2
d2u

dx2
+ Ω2 u

c2(ξ)
= 0, with Ω =

ωl

ĉ0
.

and apply the approach described above we get
u ∼ u0(ξ,X) = f0(X)U0(ξ,Ω0), Ω2 = Ω2

0 + ε2Ω2
2 + .., where

Tf0XX + Ω2
2f0 = 0

and

T = 2

(
−U2

0 (1,Ω0) +A
´ 1
−1 U0V1ξdξ´ 1

−1 U
2
0 /c

2(ξ)dξ

)
, A =

2U0(1,Ω0)

V1(1,Ω0)− V1(−1,Ω0)

Note for Bloch waves Floquet-Bloch conditions lead to
u(X + 2ε, ξ) = exp(2iεκ)u(X, ξ) this forces f0(X) = exp(iκX). Thus
the dispersion relation follows from

Tκ2 = Ω2
2

so locally quadratic. “Everything” is encapsulated in T .



If c piecewise so

c(ξ) =

{
1/r for 0 ≤ ξ < 1

1 for − 1 ≤ ξ < 0

then can solve analytically

U0(ξ,Ω
(n)
θ ) =

{
sin rΩ

(n)
θ ξ + p cos rΩ

(n)
θ ξ for 0 ≤ ξ < 1

r sin Ω
(n)
θ ξ + p cos Ω

(n)
θ ξ for − 1 ≤ ξ < 0

with p = (r sin Ω
(n)
θ ± sin rΩ

(n)
θ )/(cos Ω

(n)
θ ∓ cos rΩ

(n)
θ ).

V1(ξ,Ω
(n)
θ ) =

{
sin rΩ

(n)
θ ξ for 0 ≤ ξ < 1

r sin Ω
(n)
θ ξ for − 1 ≤ ξ < 0.

To get

T
(n)
θ = ±4Ω

(n)
θ

sin Ω
(n)
θ sin Ω

(n)
θ r

(r sin Ω
(n)
θ ∓ sin rΩ

(n)
θ )(cos Ω

(n)
θ ∓ cos rΩ

(n)
θ )



Dispersion curves

Verify versus the Bloch dispersion relation which is known exactly in this
example as

2r[cos Ω cos rΩ− cos 2εκ]− (1 + r2) sin Ω sin rΩ = 0.
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The dispersion curves for r = 1/4. Panel (b) shows the detail for the

Bloch spectra at the double root at Ω
(4)
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(5)
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asymptotics shown as the dot-dashed lines. Panel (c) plots Ω(3) − Ω
(3)
0

on log-log axes to illustrate the accuracy: numerics are given by the solid

line and the asymptotics are the dashed line.



Line forcing

We can naturally start using the continuum model to solve line forcing
(or defect or other forcing etc) on the long-scale and doing so is much
easier than solving the full problem. In this example for a delta function
forcing at x = −1
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Discrete media: localization of modes

Return to masses and springs:

2n 2n+1

M
2n

M
2n+1

The displacements y2n satisfy

y2n−1 + y2n+1 − 2y2n = −M2nΩ2y2n

y2n + y2n+2 − 2y2n+1 = −M2n+1Ω2y2n+1.

Now let the masses vary on a long-scale (defined later..)

M2n = M2[1 + γg2n], M2n+1 = M1[1 + γg2n+1]

Do localised/ trapped modes exist? Does the theory find them?



Two scales
A discrete version of the theory: long scale N � 1 and ε = 1/N � 1.
The long variable η = 2n/N is continuous. Take an elementary cell of
four masses 2n, 2n+ 1 and their neighbours, call these m = −1, 0, 1, 2.

y2n+m = y(η +mε,m) ∼ y(η,m) +mεyη(η,m) +
(mε)2

2
yηη(η,m) + . . .

The four cell masses are at y2n−1 = y(η − ε,−1), y2n = y(η, 0),
y2n+1 = y(η + ε, 1) and y2n+2 = y(η + 2ε, 2).
In fact just need two of them and use that they are in-phase or
out-of-phase over a cell

[y2n−1, y2n+2] = [y(η−ε,−1), y(η+2ε, 2)] = (−1)J [y(η−ε, 1), y(η+2ε, 0)]

Take

M2n = M2[1 + ε2αg(η)], M2n+1 = M1[1 + ε2αg(η)].



This all reduces to a matrix problem

[A0 − Ω2M(1 + ε2αg(η)) + εA1(∂,Ω) + ε2A2(∂2,Ω)]y(η) = 0,

where ∂ denotes ∂/∂η, y(η) = [y(η, 0), y(η, 1)]T . When A0, A1 and A2

are matrix differential operators.
The ansatz

y(η) = y0(η) + εy1(η) + ε2y2(η) + . . . (0.13)

Ω2 = Ω2
0 + εΩ2

1 + ε2Ω2
2 + . . . (0.14)

and again solve order-by-order. Skip the algebra...
Note simply that

y0(η) = f0(η)Y0

and again a differential ODE for f0 appears...



ODEs for optical mode

In-phase/ out-of phase (if α = 0 get Bloch asymptotics).

2

(M1 ±M2)
f0ηη ∓ [Ω2

2 + αΩ2
0g(η)]f0 = 0,
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Panel (a) Ω2 ∼ 3.01896 (3.01880). Panel (b) Ω2 = 1.99239

(Ω2 = 1.99236).



Frames

Models in structural dynamics: frames, trusses, nets - cellular solids
(bones, foams ...).

L

l

A macrostructure net of overlapping strings on scale L (left) constructed
from an elementary cell of microscale l (right).



Homogenized equation

Follow the multiple scales procedure to get

T11f0XX + T22f0Y Y + Ω2
2f0 = 0 (0.15)

where

T11 =
4r1r3Ω0

Q1I
, T22 =

4r2r4Ω0

Q2I
(0.16)

where I is the integral

I = r21

1ˆ

0

(
U

(1)
0

)2
dξ+r23

0ˆ

−1

(
U

(3)
0

)2
dξ+r22

1ˆ

0

(
U

(2)
0

)2
dη+r24

0ˆ

−1

(
U

(4)
0

)2
dη .

and
Q1 = r1 cos Ωr1 sin Ωr3 + r3 cos Ωr3 sin Ωr1

(Q2 similar).

The sign of T11, T22 changes and we go from elliptic to hyperbolic

equations - some directions are “weak”. Can use this to generate

asymptotic Bloch curves, localization, forcing etc.



Typical dispersion relation
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Q1 = 0 (Q2 = 0); those along C and B arise at Ω0r1 = π/2, 3π/2 etc.



Variation of T
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Variation of T11, T22 with parameters for periodic standing waves and

r1 = r3 = 1 and r2 = r4. (a) standing wave eigenvalue, Ω0, with r2; (b)

Ω0r1 versus Ω0r2. (b) colour-coded regions with 1 having both T11, T22
negative, 2 has T11 negative and T22 positive, 3 has both T11, T22
positive and 4 has T11 positive and T22 negative. (c) and (d) T11 and

T22 versus Ω0r2 for solutions in (b). Dashed line is zero and dotted show

Ω0r2 = π/2, π, 3π/2 with sign changes in T11, T22 occuring in (b).



Photonics- checkerboard media
An idealised medium made of checkerboards, each with a different
refractive index. This illustrates interesting features such as
all-angle-negative refraction and ultra-refraction. These only occur for
very precise frequencies that can now be predicted by the theory.



Localised defect mode
Excitation in a stop-band, note periodic-periodic behaviour and envelope
given by asymptotic theory

u(x, y) ∼ 1

2π
K0

(√
Ω2 − Ω2

0

|T |
√
x2 + y2

)



Ultra-refraction
Excitation close to a standing wave frequency where locally the group
velocity is almost zero - the medium is then “slow” and omni-directional
antennae can be designed. Theory gives effective refractive index

neff (Ω,Ω0) =
2√
|T |

(Ω2 − Ω2
0)

Ω
,



All-angle-negative refraction

More complicated, here one needs a crossing of the dispersion curves
with a stright line and the theory predicts the critical frequency is

ΩHFH =
Ω0√

1− T/4
.
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(b) r=10

Concentrate on r = 10 case (high contrast)



All-angle-negative refraction - imaging

Top panels r = 1 (low contrast), upper panels r = 10 case (high
contrast). Note the slab behaves as if it has negative refractive index.



Some references

The homogenization is in Craster, Kaplunov and Pichugin (Proc R Soc
Lond A, 2010).
For discrete media in Craster, Kaplunov & Postnova (QJMAM, 2010).
For nets in Nolde, Craster, Kaplunov (JMPS 2011) and
For optics in Craster, Kaplunov, Nolde and Guenneau (JOSA 2011 &
Wave Motion 2012).
Elastic plates in Antonakakis & Craster (Proc R Soc Lond 2012).


