- 1. Making 3D Metamaterials by 3D Laser Nanoprinting 1.1. Using Two-Photon Absorption 1.2. Using Two-Step Absorption 1.3. Comparison with Other Approaches

2. Extreme Cauchy Elasticity 3. Chiral Micropolar Elasticity

- 3.1. Static Case: Twists and Characteristic Length Scales 3.2. Chiral Phonons and Acoustical Activity
- 3.3. Towards Isotropic Elastic Properties 3.4. Roton-Like Dispersion Relations
- 4. Nonlocal Elasticity

- 4.1. Beyond-Nearest-Neighbor Interactions 4.2. Elastic, Acoustic, and Electromagnetic Waves
- 5. Anomalous Frozen Evanescent Phonons 5.1. Complex Band Structures and the Cauchy-Riemann Equations 5.2. Examples

Martin Wea

When pushing or pulling on a bar, Cauchy continuum mechanics does t allow for twisting of the bar – even if the material unit cells break inversion symmetry. $\overrightarrow{\sigma} = \overrightarrow{C} \, \overrightarrow{\epsilon} : \ \overrightarrow{r} \to -\overrightarrow{r} \ \Rightarrow \ \overrightarrow{C} \to \overrightarrow{C}$ Louis Cauchy, 1789-1857 ieters, but force-to-torque con o 21 ir ersion is forbi

characteristic number or length		
<mark>φ(N</mark> >	1) = $\varphi(1) \frac{NN_{c}^{2}}{N^{2} + N_{c}^{2}}$; $N_{c} = \frac{L_{c}}{a_{xy}} = \sqrt{\frac{a_{c}}{a_{xy}}}$	
	$\approx N$: $N \ll N_c$	
	$= N_c/2$: $N = N_c$ maximum	
	$\approx N_c^2/N$: $N \gg N_c$	

Martin We

A Cube has 3+3 Degrees of Freedom

3 translational + 3 rotational degrees of free

- 1. Making 3D Metamaterials by 3D Laser Nanoprinting 1.1. Using Two-Photon Absorption 1.2. Using Two-Step Absorption 1.3. Comparison with Other Approaches

2. Extreme Cauchy Elasticity

- 3. Chiral Micropolar Elasticity 3.1. Static Case: Twists and Characteristic Length Scales
 - 3.2. Chiral Phonons and Acoustical Activity
 - 3.3. Towards Isotropic Elastic Properties 3.4. Roton-Like Dispersion Relations

4. Nonlocal Elasticity

- 4.1. Beyond-Nearest-Neighbor Interactions
- 4.2. Elastic, Acoustic, and Electromagnetic Waves
- 5. Anomalous Frozen Evanescent Phonons 5.1. Complex Band Structures and the Cauchy-Riemann Equations 5.2. Examples

Hooke's Law has <mark>Issues</mark>

Hooke's Law has Issues

approximated by higher-order derivatives. Here, only even orders occur, for which we have		
This allows	s us to rewrite the ter	m
$+K_3(u_n$	$u_{n+3} - 2u_n + u_{n-3})$	<i>m</i> = 2, 4, 6

modified wave equation for N=3		
$m\frac{\partial^2 u}{\partial t^2} = A_2 \frac{\partial^2}{\partial x}$	$\frac{u}{2} + A_4 \frac{\partial^4 u}{\partial x^4} + A$	$6\frac{\partial^6 u}{\partial x^6}$ $a \to 0$
with coefficients		
$A_2 = K_1 a^2 + 9$ $A_4 = 6K_3 a^4$ $A_4 = K_4 a^6$	K ₃ a ²	

$m \frac{1}{\partial t^2} = A_2$	$\rightarrow + A$			0
01	∂x^2	$\frac{1}{\partial x^4}$	$A_6 \overline{\partial x^6}$	$a \rightarrow 0$
]
abling roton	like disp	ersion r	elations	

- 1. Making 3D Metamaterials by 3D Laser Nanoprinting 1.1. Using Two-Photon Absorption 1.2. Using Two-Step Absorption

 - 1.3. Comparison with Other Approaches

2. Extreme Cauchy Elasticity

- 3. Chiral Micropolar Elasticity 3.1. Static Case: Twists and Characteristic Length Scales

 - 3.2. Chiral Phonons and Acoustical Activity 3.3. Towards Isotropic Elastic Properties 3.4. Roton-Like Dispersion Relations
- 4. Nonlocal Elasticity
 - - 4.1. Beyond-Nearest-Neighbor Interactions 4.2. Elastic, Acoustic, and Electromagnetic Waves
- 5. Anomalous Frozen Evanescent Phonons 5.1. Complex Band Structures and the Cauchy-Riemann Equations 5.2. Examples

Martin Weg

Elastic Waves

M We

(band index i) results from the implicit equation		
$\frac{\cos(3ka) - \cos\left(\omega_i \frac{l_3}{c_3}\right)}{7 \sin\left(\omega_i \frac{l_3}{c_3}\right)}$	$\frac{1}{1} + \frac{\cos(ka) - \cos\left(\omega_{i} \frac{l_{1}}{c_{1}}\right)}{Z_{i} \sin\left(\omega_{i} \frac{l_{1}}{c_{1}}\right)} = 0$	
$\omega_{l} c_{3}$	$\omega_1 \omega_1 c_1)$	
For equal impedances	and wave speeds of the two sets	
only by the two cable l	enaths.	

- 1. Making 3D Metamaterials by 3D Laser Nanoprinting 1.1. Using Two-Photon Absorption 1.2. Using Two-Step Absorption

 - 1.3. Comparison with Other Approaches

2. Extreme Cauchy Elasticity

- 3. Chiral Micropolar Elasticity 3.1. Static Case: Twists and Characteristic Length Scales

 - 3.2. Chiral Phonons and Acoustical Activity 3.3. Towards Isotropic Elastic Properties 3.4. Roton-Like Dispersion Relations

- Nonlocal Elasticity
 A.1. Beyond-Nearest-Neighbor Interactions
 4.2. Elastic, Acoustic, and Electromagnetic Waves

5. Anomalous Frozen Evanescent Phonons 5.1. Complex Band Structures and the Cauchy-Riemann Equations 5.2. Examples

Martin Wege

1. Making 3D Metamaterials by 3D Laser Nanoprinting

- 1.1. Using Two-Photon Absorption
 - 1.2. Using Two-Step Absorption
 - 1.3. Comparison with Other Approaches

2. Extreme Cauchy Elasticity

- 3. Chiral Micropolar Elasticity
 - 3.1. Static Case: Twists and Characteristic Length Scales
 - 3.2. Chiral Phonons and Acoustical Activity
 - **3.3. Towards Isotropic Elastic Properties** 3.4. Roton-Like Dispersion Relations

4. Nonlocal Elasticity

- 4.1. Beyond-Nearest-Neighbor Interactions 4.2. Elastic, Acoustic, and Electromagnetic Waves
- 5. Anomalous Frozen Evanescent Phonons 5.1. Complex Band Structures and the Cauchy-Riemann Equations 5.2. Examples

Martin Wege

Acknowledgements

martin.wegener@kit.edu

martin.wegener@kit.edu

Martin We