Dispersion of Flexural Waves

Gautier Lefebvre

Université de Technologie de Compiègne

Roberval laboratory

Outline of the Lecture

I. Flexural Waves in Plates

1. Low-Frequency Limit of Lamb Waves
2. Flexural Wave Equation

II.Dispersion of waves

1. Wave packet, Phase Velocity, Group Velocity
2. Propagation in Dispersive Media
3. Dispersion in Plates
a) Isotropic Plate
b) Orthotropic Plate

Low-Frequency limit of Lamb Waves

Dispersion relation:

$$
\frac{\omega^{4}}{c_{T}^{4}}=4 k^{2} q^{2}\left(1-\frac{p}{q} \frac{\tan (p h / 2+\alpha)}{\tan (q h / 2+\alpha)}\right) \text { with } \alpha=0 \text { or } \pi / 2
$$

At low frequency, first order development: $\omega \rightarrow 0, k \rightarrow 0, p \rightarrow 0, q \rightarrow 0$

$$
\text { For } \quad \alpha=0, \quad \frac{\omega^{4}}{c_{T}^{4}}=4 k^{2}\left(q^{2}-p^{2}\right)=4 k^{2}\left(k_{T}^{2}-k_{L}^{2}\right)=4 k^{2} \omega^{2}\left(\frac{1}{c_{T}^{2}}-\frac{1}{c_{L}^{2}}\right)
$$

$$
c_{P}=\frac{\omega}{k}=2 c_{T} \sqrt{1-\frac{c_{T}^{2}}{c_{L}^{2}}}=c_{T} \sqrt{\frac{2}{1-v}}=c_{L} \frac{\sqrt{1-v}}{1-v} \Rightarrow \sqrt{2} c_{T}<c_{P}<c_{L}
$$

Symmetric Mode

Displacements:

$$
\left\{\begin{array}{l}
u_{x}=(i k B \cos (p z)-q A \cos (q z)) e^{i(k x-\omega t)} \\
u_{z}=(p B \sin (p z)+i k A \sin (q z)) e^{i(k x-\omega t)}
\end{array}\right.
$$

At low frequency,

$$
\left\{\begin{array}{l}
p^{2}=\frac{\omega^{2}}{c_{L}^{2}}-k^{2}=k^{2}\left(\frac{c_{P}^{2}}{c_{L}^{2}}-1\right) \\
q^{2}=\frac{\omega^{2}}{c_{T}^{2}}-k^{2}=k^{2}\left(\frac{c_{P}^{2}}{c_{T}^{2}}-1\right)
\end{array} \quad \sqrt{2} c_{T}<c_{P}<c_{L}, \quad\left\{\begin{array}{l}
p=i k \sqrt{1-\frac{c_{P}^{2}}{c_{L}^{2}}} \\
q=k \sqrt{\frac{c_{P}^{2}}{c_{T}^{2}}-1}
\end{array}\right.\right.
$$

Symmetric Mode

Displacements:

$$
\left\{\begin{array}{l}
u_{x}=(i k B-q A) e^{i(k x-\omega t)} \\
u_{z}=\left(B p^{2}+i A k q\right) z e^{i(k x-\omega t)}
\end{array}\right.
$$

$$
B=-2 i k \frac{q}{k^{2}-q^{2}} A\left\{\begin{array}{l}
p=i k \sqrt{1-\frac{c_{P}^{2}}{c_{L}^{2}}} \\
q=k \sqrt{\frac{c_{P}^{2}}{c_{T}^{2}}-1}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
u_{x}=q \frac{A}{v} e^{i(k x-\omega t)} \\
u_{z}=-i \frac{q k A z}{1-v} e^{i(k x-\omega t)}
\end{array} \quad \frac{\left|u_{z}(\pm h / 2)\right|}{u_{x}}=\frac{1-v}{v} \frac{k h}{2} \ll 1\right.
$$

Antisymmetric Mode

Displacements:

$$
\left\{\begin{array}{l}
u_{x}=(i k B p z-q A q z) e^{i(k x-\omega t)} \\
u_{z}=(p B+i k A) e^{i(k x-\omega t)}
\end{array} \quad B=-2 i k \frac{q}{k^{2}-q^{2}} A\right.
$$

After simplifications:

$$
B=-2 i k \frac{q}{k^{2}-q^{2}} A\left\{\begin{array}{l}
p=i k \sqrt{1-\frac{c_{P}^{2}}{c_{L}^{2}}} \\
q=k \sqrt{\frac{c_{P}^{2}}{c_{T}^{2}}-1}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
u_{x}=-k^{2} A \frac{k^{2}+q^{2}}{k^{2}-q^{2}} z e^{i(k x-\omega t)} \\
u_{z}=i k A \frac{k^{2}+q^{2}}{k^{2}-q^{2}} e^{i(k x-\omega t)}
\end{array} \quad \frac{\left|u_{x}(\pm h / 2)\right|}{u_{z}}=\frac{k h}{2} \ll 1\right.
$$

Kirchoff-Love Plate

- Hypothesis of pure flexion from start
- Write the corresponding stress and deformation tensors
- Derivation from Newton's laws or Hamiltonian principle

Kirchhoff-Love Plate

- The transverse displacement is dominant, so we only need: $u_{z}=u$

$$
\begin{aligned}
& \rho h \frac{\partial^{2} u}{\partial t^{2}}+D \Delta^{2} u=0 \\
& \text { with } \Delta^{2}=\nabla^{4}=\frac{\partial^{4}}{\partial x^{4}}+\frac{\partial^{4}}{\partial y^{4}}+2 \frac{\partial^{4}}{\partial x^{2} \partial y^{2}} \text { and } D=\frac{E h^{3}}{12\left(1-v^{2}\right)}
\end{aligned}
$$

- Order 4 operator, more boundary conditions needed.
- Analytical solutions for specific geometries in finite structures

$(0,1)$ mode
$(0,2)$ mode

Outline of the Lecture

I. Flexural Waves in Plates

1. Low-Frequency Limit of Lamb Waves
2. Flexural Wave Equation

II. Dispersion of waves

1. Wave packet, Phase Velocity, Group Velocity
2. Propagation in Dispersive Media
3. Dispersion in Plates
a) Isotropic Plate
b) Orthotropic Plate

Dispersion of Waves

- Relation between frequency and wavenumber:

$$
f(\omega, k)=0, \text { or } \omega=f(k)
$$

Exemple: D’Alembert equation:

$$
\frac{\partial^{2} u}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}=0
$$

General Solution:

$$
u(x, t)=u_{1}(x-c t)+u_{2}(x+c t)
$$

- Generic method to find the dispersion : Progressive Harmonic Wave Decomposition

$$
e^{i(k x-\omega t)}
$$

Dispersion Relation

Injecting the progressive harmonic form in the wave equation:

$$
\begin{array}{lc}
\frac{\partial}{\partial x}=i k & k^{2} e^{i(k x-\omega t)}-\frac{\omega^{2}}{c^{2}} e^{i(k x-\omega t)}=0 \\
\frac{\partial}{\partial t}=-i \omega & \\
& k^{2}=\frac{\omega^{2}}{c^{2}}
\end{array}
$$

Linear relation between k and ω

Dispersion Relation

Flexion in a beam:

$$
\rho S \frac{\partial^{2} w}{\partial t^{2}}+E I \frac{\partial^{4} w}{\partial x^{4}}=0 \quad-\rho S \omega^{2} e^{i(k x-\omega t)}+E I k^{4} e^{i(k x-\omega t)}=0
$$

$$
\omega^{2}=\frac{E I}{\rho S} k^{4}
$$

Non linear relation between k and ω

Phase Velocity

The phase of the progressive harmonic wave is:

$$
\Psi=k x-\omega t
$$

We look for the positions where $\Psi=$ cte for a given t :

$$
x=\frac{\omega}{k} t-\frac{\Psi}{k}
$$

This defines a plane in space, travelling at speed:

$$
v_{\phi}=\frac{\omega}{k}
$$

Represents the speed of a given harmonic plane wave.

Phase Velocity

Medium is non dispersive if $v_{\phi}=$ cte
Example: for acoustic waves, $\quad v_{\phi}(\omega)=c=\frac{1}{\sqrt{\rho \chi}}$
Also true for all waves following d'Alembert equation

All frequencies travel at the same speed v_{ϕ}

Wave Packet

All the harmonic plane waves $e^{i(k x-\omega t)}$ are solutions of the wave equation if they verify the dispersion relation.

By linearity, plane waves can be combined:

$$
\begin{aligned}
& u(x, t)=\sum_{n} A\left(\omega_{n}\right) e^{i\left(k_{n} x-\omega_{n} t\right)} \\
& u(x, t)=\int a(\omega) e^{i(k x-\omega t)} d \omega
\end{aligned}
$$

Wave Packet

Wave packet with two harmonic waves:

$$
\begin{aligned}
& u(x, t)=\cos (k x-\omega t)+\cos ((k+\Delta k) x-(\omega+\Delta \omega) t) \\
& u(x, t)=2 \cos \left(\left(k+\Delta \frac{k}{2}\right) x-\left(\omega+\Delta \frac{\omega}{2}\right) t\right) \cos \left(\frac{\Delta k}{2} x-\frac{\Delta \omega}{2} t\right)
\end{aligned}
$$

fixed position x
Frequency $\omega+\Delta \omega / 2 \quad$ Envelope frequency $\Delta \omega$

Group Velocity

$$
u(x, t)=2 \cos \left(\left(k+\Delta \frac{k}{2}\right) x-\left(\omega+\Delta \frac{\omega}{2}\right) t\right) \cos \left(\frac{\Delta k}{2} x-\frac{\Delta \omega}{2} t\right)
$$

The fast oscillation travels at a speed:

$$
v_{\phi}=\frac{\omega+\frac{\Delta \omega}{2}}{k+\frac{\Delta k}{2}}
$$

The envelope travels at speed:

$$
v_{g}=\frac{\Delta \omega}{\Delta k}
$$

Group Velocity

$$
u(x, t)=2 \cos \left(\left(k+\Delta \frac{k}{2}\right) x-\left(\omega+\Delta \frac{\omega}{2}\right) t\right) \cos \left(\frac{\Delta k}{2} x-\frac{\Delta \omega}{2} t\right)
$$

The fast oscillation travels at a speed:

$$
v_{\phi}=\frac{\omega+\frac{\Delta \omega}{2}}{k+\frac{\Delta k}{2}} \rightarrow \frac{\omega}{k}
$$

The envelope travels at speed:

$$
v_{g}=\frac{\Delta \omega}{\Delta k} \rightarrow \frac{d \omega}{d k}
$$

murarlmanharlla
Group Velocity Animation

Group Velocity

Example of dispersion curve:

v_{ϕ} : slope of the string $A B$
v_{g} : slope of the tangent
v_{g} can be negative or zero!
Zero Group Velocity Modes in Lamb waves

Beam Flexion Dispersion

Dispersion curve of beam flexural waves:

$$
\begin{gathered}
\omega=k^{2} \sqrt{\frac{E I}{\rho S}} \\
v_{\phi}=\frac{\omega}{k}=k \sqrt{\frac{E I}{\rho S}}=\left(\frac{E I}{\rho S}\right)^{1 / 4} \sqrt{\omega} \quad v_{g}=\frac{d \omega}{d k}=2 k \sqrt{\frac{E I}{\rho S}}=2 v_{\phi}
\end{gathered}
$$

- Higher frequencies travel faster
- Different frequencies are dispersing
- A wave packet is spreading through propagation

Dispersion of a Wave Packet

Non-dispersive medium

Dispersive medium

Group Velocity

Hammer impact at Point B

Hammer impact at Point A

Dispersion in Plates: Isotropic Case

Flexural waves equation:

$$
\rho h \frac{\partial^{2} u}{\partial t^{2}}+D\left(\frac{\partial^{4} u}{\partial x^{4}}+\frac{\partial^{4} u}{\partial y^{4}}+2 \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}}\right)=0
$$

Plane wave in 2D:

$$
e^{i(\vec{k} \vec{r}-\omega t)}=e^{i\left(k_{x} x+k_{y} y-\omega t\right)} \quad \vec{k}=k_{x} \vec{e}_{x}+k_{y} \vec{e}_{y}
$$

$$
\begin{aligned}
& \rho h \omega^{2}-D\left(k_{x}^{4}+k_{y}^{4}+2 k_{x}^{2} k_{y}^{2}\right)=0 \\
& \omega^{2}=\frac{D}{\rho h}\left(k_{x}^{2}+k_{y}^{2}\right)^{2} \quad 3 \text { parameters }
\end{aligned}
$$

Dispersion in Plates: Isotropic Case

$$
\omega=\sqrt{\frac{D}{\rho h}}\left(k_{x}^{2}+k_{y}^{2}\right)=\sqrt{\frac{D}{\rho h}}\|\vec{k}\|^{2}
$$

Circle in the plane $\omega=$ cte

In 3D, paraboloid $\omega=f\left(k_{x}, k_{y}\right)$

Finite Size Effects

Duraluminium plate dimensions: $40 \times 40 \times 0.5 \mathrm{~mm}$

- Discrete spectrum
- Deviation from the infinite medium

Revival Effect in Plates

$$
T_{\mathrm{rev}}=\frac{4 L^{2}}{\pi \frac{\partial^{2} \omega_{n}}{\partial k^{2}}}=\frac{4 \pi^{2}}{L^{2}} \sqrt{\frac{D}{\rho h}}
$$

Revival Experiment
Video

Revival Effect in Plates

Spectrum
Autocorrelation

Source at centre $\operatorname{gcd}(\Delta \mathrm{f})=5.49 \mathrm{kHz}$ $\mathrm{T}_{\text {rev }}=182 \mu \mathrm{~s}$
$1 / 3$ diagonal $\operatorname{gcd}(\Delta \mathrm{f})=2.06 \mathrm{kHz}$
$\mathrm{T}_{\mathrm{rev}}=484 \mu \mathrm{~s}$

Arbitrary position $\operatorname{gcd}(\Delta \mathrm{f})=0,69 \mathrm{kHz}$
$\mathrm{T}_{\mathrm{rev}}=1450 \mu \mathrm{~s}$

Revival Effect in Plates

Gradient-Index Lens

Maxwell fish-eye lens
Maxwell, Cambridge Dublin Math. J. (1854)
Kirchhoff-Love equation:

$$
\rho h \frac{\partial^{2} u}{\partial t^{2}}+D \Delta^{2} u=0
$$

Refractive index variation:

$$
n(r)=\frac{2}{\left(1+\left(r / r_{0}\right)^{2}\right)^{2}}
$$

Phase velocity:

$$
v_{\phi}=\left(\frac{E h^{2} \omega^{2}}{12 \rho\left(1-v^{2}\right)}\right)^{1 / 4}
$$

Thickness profile:

$$
h(r)=h_{0}\left(1+\left(r / r_{0}\right)^{2}\right)^{2}
$$

Gradient-Index Lens

Piezoelectric disk

Gradient-Index Lens

60 kHz wavepacket

Dispersion in Plates: Isotropic Case

30 kHz wavepacket

Experiments on Maxwell's fish-eye dynamics in elastic plates, Applied. Phys. Lett. 2015

Dispersion in Plates: Orthotropic Case

Flexural waves equation in an orthotropic plate:

$$
\rho h \frac{\partial^{2} u}{\partial t^{2}}+D_{x} \frac{\partial^{4} u}{\partial x^{4}}+D_{y} \frac{\partial^{4} u}{\partial y^{4}}+2 D_{x y} \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}}=0
$$

Dispersion relation:

$$
\rho h \omega^{2}=D_{1} k_{x}^{4}+D_{3} k_{y}^{4}+2 D_{x y} k_{x}^{2} k_{y}^{2}
$$

For fixed ω, equation of an ellipse with variables k_{x}^{2}, k_{y}^{2}

Dispersion in Plates: Orthotropic Case

$$
\rho h \omega^{2}=D_{x} k_{x}^{4}+D_{y} k_{y}^{4}+2 D_{x y} k_{x}^{2} k_{y}^{2}
$$

- Wave speed depends on the direction of propagation
- Wavenumber growing with frequency

Dispersion in Plates: Orthotropic Case

- Orthotropic materials are common, e.g.: wood, composites with fibres (carbon, glass)
- Only 4 coefficients needed to characterize the plate flexion

	$E_{x}(\mathrm{GPa})$	$E_{y}(\mathrm{GPa})$	$\mu(\mathrm{GPa})$	v
Norway Spruce	15.8	0.85	0.84	0.3
Sitka Spruce	11.5	0.47	0.5	0.3
Fir	8.86	0.54	1.6	0.3
Maple	10	2.2	2	0.3

Ribbed Plates

Structuration brings anisotropy

2D Fourier Transform (central symmetry $k \rightarrow-k$)

Ribbed Plates

$k_{\text {principal: }}$ dominant wavenumber of the mode

- Dispersion identical to the homogeneous plate up to 2 kHz
- Wavenumbers are increased by the presence of bars
- Additional dispersion branches
appear

Ribbed Plates

Freq $=2410.81 \mathrm{~Hz}$

Modes_2D-FFT

Ribbed Plates

Spatial dispersion map rescaled by $\sqrt{\omega}$
Spatial dispersion map rescaled by $\sqrt{\omega-\omega_{1}}$

Periodic Structures

Dispersion maps can be obtained by FloquetBloch theory, or homogenisation methods

Periodic Structures

Extreme anisotropy effects
Unveiling Extreme Anisotropy in Structured Media, Phys. Rev. Lett. 2016

