

Content	
Sound waves in fluids Waves Motion General equations Some general solutions Fourier transforms Sources of sound and energy Green's function Low frequencies propagation in duct (1D) Dissipation in ducts	p 3 p 8 p 16 p 23 p 34 p 41 p 54 p 67 p 102
	p 2

Waves motion

$$\frac{\partial^2 a}{\partial x^2} = \frac{\partial}{\partial x} \left(-\frac{\partial a}{\partial (c_0 t)} \right) = \frac{1}{c_0^2} \frac{\partial^2 a}{\partial t^2}$$

$$\frac{\partial^2 b}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial b}{\partial (c_0 t)} \right) = \frac{1}{c_0^2} \frac{\partial^2 b}{\partial t^2}$$
1-D Wave equation $\implies \frac{\partial^2 p}{\partial x^2} = \frac{1}{c_0^2} \frac{\partial^2 p}{\partial t^2}$

Some general solutions
• Equation in 1D
Velocity
$$\vec{u} = u(x,t)\vec{u}$$

 $\frac{1}{c_0^2}\frac{\partial p}{\partial t} = -\rho_0\frac{\partial u}{\partial x}$
 $p(x,t) = p^+(t-\frac{x}{c_0}) = p^+(T)$ where $T = t - \frac{x}{c_0}$
 $u(x,t) = u^+(t-\frac{x}{c_0}) = u^+(T)$ Emission time
 $\frac{\partial p}{\partial t} = \frac{dp^+}{dT}\frac{\partial T}{\partial t} = \frac{dp^+}{dT}$
 $\frac{\partial u}{\partial x} = \frac{du^+}{dT}\frac{\partial T}{\partial x} = -\frac{1}{c_0}\frac{du^+}{dT}$
 $u^+ = \frac{p^+}{\rho_0 c_0}$

Fourier transforms

The spatial Fourier transform is defined by:

$$\check{p}(k,t) \stackrel{\text{def}}{=} \frac{1}{2\pi} \int_{-\infty}^{\infty} p(x,t) e^{jkx} \, \mathrm{d}x$$

- ----

and the inverse spatial Fourier transform is defined by:

p 37

$$p(x,t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} \check{p}(k,t) e^{-jkx} \, \mathrm{d}k$$

Acoustical energy $\frac{\partial E}{\partial t} + \vec{\nabla}.\vec{I} = \mathcal{P}sources$ $S \quad \langle \mathcal{P} \rangle = \iint_{S} \operatorname{Real}\langle \vec{n}.\vec{u}p \rangle \mathrm{d}A$ $\iint_{S} \langle \vec{n}.\vec{I} \rangle \mathrm{d}A = \iiint_{V} \langle \mathcal{P}sources \rangle \mathrm{d}V$ $\inf_{Intensity \text{ flux}} \langle g \rangle = \frac{1}{T} \int_{0}^{T} g(t) \mathrm{d}t$

Green's	functions	p 59
Free field Green's functions:		
	1D	3D
$\Delta G + k^2 G = \delta(\vec{x} - \vec{y})$	$rac{\mathrm{j}}{2k}e^{\mathrm{j}k X }$	$\frac{e^{-\mathbf{j}kR}}{4\pi R}$
$\frac{\partial^2 G}{\partial t^2} - c_0^2 \Delta G = \\ \delta(\vec{x} - \vec{y}) \delta(t - \tau)$	$\frac{1}{2c_0}H(T - X /c_0)$	$\frac{\delta(T-R/c_0)}{4\pi c_0 R}$
$T = t - \tau \qquad X = x - y \qquad R = \ \vec{x} - \vec{y}\ $		

$$\hat{p}^{62}$$
Green's functions

$$\hat{p}(\vec{x}) = \frac{jk_0\rho_0c_0}{2\pi} \iint_{S_0} \frac{e^{-jk_0|\vec{x}-\vec{y_0}|}}{|\vec{x}-\vec{y_0}|} v(\vec{y_0}) r dr d\phi$$

$$\hat{y_0}$$
In the far field $x \gg y_0$

$$|\vec{x}-\vec{y_0}| = \sqrt{x^2 + y_0^2 - 2\vec{x}.\vec{y_0}} \simeq r - \frac{\vec{x}.\vec{y_0}}{r}$$

$$\hat{p}(\vec{x}) = jk_0\rho_0c_0v \frac{e^{-jk_0r}}{2\pi r} \int_0^{2\pi} \int_0^a e^{jk_0r_0\sin\theta\cos(\phi_0-\phi)} r_0dr_0 d\phi_0$$

$$\hat{p}(\vec{x}) = j2\pi a^2k_0\rho_0c_0v \frac{e^{-jk_0r}}{4\pi r} \frac{2J_1(k_0a\sin\theta)}{k_0a\sin\theta}$$
like monopole directivity

p 65

P⁸¹
Propagation in ducts (1D)

$$Z_{1} = \frac{p_{1}}{u_{1}} = \frac{\cos(k_{0}L)p_{2} + jZ_{c}\sin(k_{0}L)u_{2}}{jZ_{c}^{-1}\sin(k_{0}L)p_{2} + \cos(k_{0}L)u_{2}}$$

$$Z_{1}/Z_{c} = \frac{Z_{2}/Z_{c} + j\tan(k_{0}L)}{1 + jZ_{2}/Z_{c}\tan(k_{0}L)}$$
Transport of impedance

$$R_{1} = \frac{p_{1}^{-}}{p_{1}^{+}} = R_{2} e^{-2jk_{0}L}$$
Transport of reflection coefficient

Propagation in ducts (1D) Bifurcation $S_1 p_1^+ + p_1^- = p_2^+ + p_2^- = p_3^+ + p_3^-$ Continuity of pressure on node $p_1 = p_2 = p_3$ $p_1^+ + p_1^- = p_2^+ + p_2^- = p_3^+ + p_3^-$ Continuity of acoustic flow rate $S_1u_1 + S_2u_2 + S_3u_3 = 0$ $S_1(p_1^+ - p_1^-) + S_2(p_2^+ - p_2^-) + S_3(p_3^+ - p_3^-) = 0$

Propagation in ducts (1D) Periodic structure $Y_{3} = \frac{S_{3}Z_{c}}{S_{1}Z_{3}}$ $\begin{pmatrix} 1 & 1 \\ 1+Y_{3} & -(1-Y_{3}) \end{pmatrix} \begin{pmatrix} p_{2}^{+} \\ p_{2}^{-} \end{pmatrix} = \begin{pmatrix} e^{-jk_{0}L} & e^{jk_{0}L} \\ e^{-jk_{0}L} & -e^{jk_{0}L} \end{pmatrix} \begin{pmatrix} p_{1}^{+} \\ p_{1}^{-} \end{pmatrix}$ $\begin{pmatrix} p_{2}^{+} \\ p_{2}^{-} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} (1-Y_{3})e^{-jk_{0}L} + e^{-jk_{0}L} & (1-Y_{3})e^{jk_{0}L} - e^{jk_{0}L} \\ (1+Y_{3})e^{-jk_{0}L} - e^{-jk_{0}L} & (1+Y_{3})e^{jk_{0}L} + e^{jk_{0}L} \end{pmatrix} \begin{pmatrix} p_{1}^{+} \\ p_{1}^{-} \end{pmatrix}$ Transfer Matrix [T]

