Acoustic devices based on Acoustic Metamaterials with positive parameters

José Sánchez-Dehesa

Wave Phenomena Group, Department of Electronic Engineering Universitat Politècnica de València, Spain

Outline:

- **1.** Sonic crystals / Phononic crystals
- 2. Acoustic metamaterials based on Sonic crystals
- **3. Acoustic lenses**
- 4. Acoustic cloaks
- **5. Acoustic Black holes**

Sonic/Phononic Crystals

periodic media made of (at least!) two elastic or fluid materials

Trainning School UPV-Valencia-Nov 13-17 2023

Phononic Crystals

PRL, 98, 134301 (2007)

PRL, 80, 5325 (1998)

Science, 289, 1739 (2000)

Trainning School UPV-Valencia- Nov 13-17 2023

Pioneering work on Phononic Crystals

ACOUSTICAL PROPERTIES OF A THINLY LAMINATED MEDIUM*

Sov. Phys. Acoustics (1958)

S. M. Rytov

 $\cos k (a + b) = \cos k_1 a \cos \overline{k}_1 b - \frac{1 + x^a}{2x} \sin k_1 a \sin \overline{k}_1 b,$

ELASTIC AND ACOUSTIC WAVE BAND STRUCTURE

M. M. SIGALAS

Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, U.S.A.

AND

E. N. ECONOMOU

Department of Physics, University of Crete, 714 09, Crete, Greece

J. Sound and Vibration (1992)

Square lattice of Ni cylinders in Al (2D)

Phys. Rev. Lett. (1993)

Acoustic Band Structure of Periodic Elastic Composites

M. S. Kushwaha,¹ P. Halevi,^{1,2} L. Dobrzynski,³ and B. Djafari-Rouhani³

¹Instituto de Física de la Universidad Autónoma de Puebla, Apdo. Post. J-48, Puebla, Puebla 72570 México ²Centro de Investigación en Física de la Universidad de Sonora, Apdo. Post. 5-088, Hermosillo, Sonora 83190, México ³Laboratoire de Dynamique et Structure des Materiaux Moleculaires, Centre National de la Recherche Scientifique, Université de Lille I, Unité Fondamentale de Recherche de Physique, Bâtiment P5, 59655 Villeneuve D'Ascq Cedex, France

> Trainning School UPV-Valencia- Nov 13-17 2023

Transmission features of sonic crystals

What is the minimum number of rows?

Acoustic metamaterials / metafluids

Acoustic metamaterials are artificial structures made of subwavelength units such that their acoustic properties are NEW in comparison with that of the building units

GFO

Li and Chan, PRE (2004)

Acoustic metamaterials / Metafluids

GFO)

HOMOGENIZATION = LIMIT ω $\theta \rightarrow$

The homogenization method: a MS approach

Homogenization of lattices of rigid cylinders (MST)

2D solid(rigid)-fluid structures (hexagonal)

GFO)

13-17 2023

Homogenization (Experimental)

The homogenization is valid below 3 kHz or $\lambda \ge 4a$ (=¹/₄ D)

Effective parameters (f = 0.4**)**: $\rho_{eff} = 1.92 \pm 0.40 \text{ Kg/m}^3$; $c_{eff} = 316 \pm 17 \text{ m/s}$

The wooden cluster dynamically behaves as a cylinder of Kripton gas!! (ρ_{kr} =1.6 Kg/m³; c_{Kr} = 319 m/s at 25^o C)

Homogenization of 2D clusters by MST: Magic clusters

PRB 75, 24140R (2007)

Sound propagation through lattices of rigid cylinders in air

Refractive devices based on SONIC CRYSTALS: lenses

Why optical lenses are possible?		Why sonic lenses did not exist?	
a)	Light velocity is lower in solids than in air: $c_{solid} < c_{air}$ ($n_{solid} > n_{air}$)	 a) Sound velocity is larger in solids than in air: v_{solid} > v_{air} (≈340 m/sec)) 	
b)	Dielectric materials exist that are transparent to light : $n_{solid} \approx n_{air}$	b) Solids materials are not transparent to sound: $Z_{solid} >> Z_{air}$	

Acoustic lenses in the audible based on SONIC CRYSTALS

Lensmaker's formula:

1700 Hz

Phys. Rev. Lett. (2002)

Acoustic lenses in the audible based on SONIC CRYSTALS

Theoretical simulations based on MST:

Gupta & Ye Phys.Rev. E (2003) Kuo & Ye J.Phys.D:AppPhys (2004)

Trainning School UPV-Valencia- Nov 13-17 2023

A gradient index sonic lens

2D Gradient Index Acoustic Lenses

3D Gradient Index Acoustic Lens (Axisymmetric)

Airborne sound: Multilayer array of toroidal scatterers

Sound Amplification≈ 8.24dB

Appl Phys Lett **103**, 264106 (2010)

Trainning School UPV-Valencia- Nov 13-17 2023

Diffraction versus refraction

PHYSICAL REVIEW E 71, 018601 (2005)

Comment on "Theory of tailoring sonic devices: Diffraction dominates over refraction"

Trainning School UPV-Valencia- Nov 13-17 2023

Wave manipulation using metafluids

Guide the sound as desired

Acoustic cloaking:

- Inspired by the similar phenomenon previously demonstrated for EM waves
- Principle like mirage

2D Acoustic cloaking

Acoustic metamaterial:

Acoustic cloaking: a proposal based on SC

$$\begin{split} \rho_1(r) &= \rho_r(r) + \sqrt{\rho_r^2(r) - \rho_b^2} = \frac{r + R_1 \sqrt{2r/R_1 - 1}}{r - R_1} \rho_b \\ c_1(r) &= \sqrt{\frac{B^* \rho_r}{\rho_b^2}} = \frac{R_2 - R_1}{R_2} \frac{r}{r - R_1} c_b \end{split}$$

$$\rho_2(r) = \rho_b^2 / \rho_1 = \frac{r - R_1}{r + R_1 \sqrt{2r/R_1 - 1}} \rho_b$$
$$c_2(r) = c_1(r) = \frac{R_2 - R_1}{R_2} \frac{r}{r - R_1} c_b$$

New J. Phys. (2008)

4. Acoustic cloaking: a proposal based on SC

Each layer is an acoustic metamaterial based on a sonic crystal made of 2 type of elastic solids

-		
Material	ho/ hoь	c/c_b
1α	400	100
1β	2	50
2α	0.1	0.5
2β	0.001	200

Acoustic cloaking: a proposal based on SC

Wave manipulation using metafluids: acoustic cloaks

Potentials applications:

- noise reduction in buildings
- Inhibition of echoes in rooms
- To make objects undetectable by sound

Acoustic cloaks based on scattering cancellation

Inverse design of cloaks

2D cloak based on scattering cancellation

- We propose to hide a rigid cylinder by means of a set of small rigid cylinders surrounding it.
- The cylinders have the same radius and their positions are obtained through an optimization procedure.

- The fitness function for this process is defined in terms of the scattering cross section; i.e., $\sigma_{cyl+cloak}\!\!=\!\!0$

Trainning School UPV-Valencia- Nov 13-17 2023

Cloaks based on scattering cancellation

Experimental realizations using discrete units

2D

App. Phys. Lett. (2011)

3D

Phys. Rev. Lett. (2013)

Advantages:

- Easy design and construction
- Scalable
- Low loss

Drawbacks:

- One directional
- Depend of the shape of the cloaked objects
- Narrowband

3D cloak: Experimental setup

- Acoustic field is recorded on three perpendicular planes
- Each plane covers an area $0.2 \times 0.2 \text{m}^2$, with 5mm of resolution.
- At each point a chirp in the range 7.5-9.5kHz was emitted, received and processed.

Inside the anechoic room:

3D cloak: theory + experiment

- Best performance obtained at 8.55kHz.
- A 90% of scattering reduction is achieved

Average visibility index:

$$\gamma = \frac{1}{N} \sum_{j} \frac{\left| P_{max,j} \right| - \left| P_{min,j} \right|}{\left| P_{max,j} \right| + \left| P_{min,j} \right|}$$

N= number of wavefronts

Acoustic black hole: an omnidirectional acoustic absorber

Narymanov & Kildishev,

Optical black hole: Broadband Omnidirectional light absorber (2009).

λ	3 mm
R _{min}	6 em
R _{max}	12.6 em
n _a	2.1
n _b	1
$rho_b = rho_r = rho_a$	1.25
c b	347
ca	c _b /n-α*i
alpha	2000

Acoustic black hole (COMSOL simulation)

Acoustic black hole: A practical realization in 2D

13-17

Omnidirectional acoustic absorber (disipative core + GRIN shell)

$$n(r) = \begin{cases} n_b & R_s < r \\ \frac{R_s}{r} n_b & R_c < r < R_s , \\ n_c + i\gamma & r < R_c \end{cases}$$

Appl. Phys. Lett. **100**, 144103 (2012) Trainning School L

Chamber width *D* = 29.6 cm Chamber length L = 148 cm

Acoustic black hole: an omnidirectional acoustic absorber

Quality factor:
$$Q_{\alpha} = \frac{1}{\Delta_{\upsilon}} \int_{\upsilon_{i}}^{\upsilon_{f}} \alpha(\upsilon) d\upsilon$$
 $\begin{bmatrix} \vartheta_{i} = 580Hz; \\ \vartheta_{f} = 3400Hz \end{bmatrix}$

Viscothermal effects in a two-dimensional acoustic black hole: A boundary element approach

Experimental (2012)

The experiments show higher absorption than simulations, due to chamber leakage The 2D simulations also miss some loss happening in the 3D chamber walls The results, however, present very similar relative differences

Phys. Rev. Appl., 15, 064057 (2021)

Summary

- **1. Sonic crystals / Phononic crystals**
- 2. Acoustic metamaterials based on Sonic crystals
- **3. Acoustic lenses**
- 4. Acoustic cloaks
- **5. Acoustic Black holes**

Thanks for your attention!!

Practical realization: 2D cloak based on scatt. cancellation

Appl. Phys. Lett. 99, 074102 (2011)

Acoustic cloak

Punctual source interacting with a cylindrical object

Inverse design of sonic lenses

Phys. Rev. B **70**, 214302 (2004) Appl. Phys. Lett. **86**, 054102 (2005)

Metamaterials with anisotropic effective mass density

Isotropic fluids:

$$c^2 = B / \rho$$

(Square and hexagonal lattices)

Anisotropic fluids:

$$c_{ij}^2 = B\rho_{ij}^{-1}$$

Components of the sound speed tensor (Rigid cylinders)

New J Phys 10, 023004 (2008)

Anisotropic mass density tensor

Phys. Rev. Lett., **105,** 174301 (2010)

Appl. Phys. Lett., 98, 244102 (2011)

Cummer's group: PRB 108, 174303 (2009); JAP109, 054906 (2011) Trainning School UPV-Valencia- Nov 13-17 2023

3D Cloak based on scattering cancellation

Sanchis et al., PRL. 110, 124301 (2013)

- Parameters:
 - 60 tori with minor radius 2.67mm
 - Sphere with radius $R_{sph} = 4$ cm
 - Frequency of operation: $f_0 = 8.62 \text{ kHz} (R_{\text{sph}} = \lambda_0)$
- Range of operation:
 - Bandwidth: 120Hz
 - Angle of incidence: +2.25° 13-17 2023

